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The detection of cavity radiation with the detector placed outside the
cavity is studied. Each leaked photon has a certain probability of propa-
gating away without being detected. It is viewed as a continuous quantum
measurement in which the density matrix is continuously revised according
to the readout of the detector. The concept of pseudomaster equation for
the no-count process is introduced; its solution leads to the discovery of the
superoperator for the same process. It has the potential to become the key
equation for continuous measurement process.

Quantum theory of measurement has been a highly controversial topic ever since the pioneer
work of yon Neumann. The process discussed in this original work is now classified as the
first-kind (nondestructive) measurement, which is described by an instantaneous projection with
projection operators as its principal mathematical tools. On the other hand, photodetection is
a second-kind (destructive) measurement. To deal with photodetection the concept of quantum
measurement must be extended to include continuous measurement process in which the quantum
state of the subject system must be continuously revised to reflect our most up-to-date knowledge
about the system resulting from the ongoing measurement process. Superoperators have been
the principal mathematical tools for such study. It is the purpose of this paper to introduce a
simple equation which has the potential to become the basic equation to describe the continuous
measurement process.

There have been two different approaches to the theory of photoelectric detection. The first
approach was initiated by Mandel [1] and followed by Kelley and Kleiner [2] and by Glauber
[3]. The second approach was initiated by Mollow [4] and followed by Scully and Lamb [5],
by She pherd [6], and by Srinivas and Davies [7]. In the first approach, light propagates in
the open space, it encounters the photodetector, and any unabsorbed photons propagate away.
In the second approach, both the radiation and the photodetector are enclosed in a cavity, and
any photons not absorbed by the detector at one time are available for detection at later times.
For obvious reason these t_'o different approaches are classified by Mandel [8] as open-system
model for the former and closed-system model for the latter.

The formula for the photoelectron distribution obtained in the open-system model was
criticized by Srinivas and Davies [7] as being a short-time approximation only, it may lead
to unphysical and meaningless results when time is large. In his response, Mandel [8] pointed
out that, for the open-system model, it should be understood that the normalization volume must
be large enough to satisfy the condition L >> ct at all times. He also pointed out that the
circumstances modelled by the closed system are much less commonly encountered in practice.

In this paper we introduce a new model that is the hybrid of the two previous approaches.
The radiation source is kept inside a cavity but the photodetector is taken outside of the cavity
to detect only those photons leaked out of one end of the cavity, and any unabsorbed photons
propagate away. We believe that this hybrid model not only keeps the merits of both previous
models but also is a closer simulation of the circumstances more frequently encountered in

practice. For example, if we want to study the statistical properties of photons in the output of
a laser system, this hybrid model will describe the situation most closely.



In 1981 Srinivas and Davies [7] first considered the closed-system photodetection as a
continuous quantum measurement. The information provided by the readout of the detector is
used to adjust the density matrix continuously so that it always represents our most current
knowledge about the cavity radiation. The counting process consists of no-count and one-count
processes, the former lasts a finite duration while the latter occurs instantaneously. The effects
of the two processes on the density matrix can be represented by two superoperators postulated
to be as follows: (i) The one-count process is described by the superoperator ,7 such that

a (t)at
+) = Jb(t) - Tr[ (t)ata]" (1)

where t_(t) and/_(t +) are the density matrix for the radiation field immediately before and after

the detection of a photoelectron while _ and at are the annihilation and creation operators,
respectively, of a photon. (ii) The no-count process lasting for a duration r is described by the

superoperator S,- such that

exp (- atar) (¢)exp (- atar)
_(t ÷ 7-) = Sty(t) = (2)

Tr [_(t) exp (-aa,ar)] '

where A is the coupling constant. It is obvious from Eqs. (1) and (2) that the evolution of the
quantum state for the cavity radiation under continuous photon counting is nonunitary. These
two postulates were verified very recently by hnoto et al. [9] by using some specific microscopic
model. The system consists of a cavity radiation and a stream of two-level atoms described by
the well-known Jaynes-Cumming Hamiltonian. More detailed theory has been further developed
by Ueda et al. [10].

These two superoperators are valid for the closed-system model. To find the corresponding
superoperators for the hybrid model is the initial motiv, ation of the present study. We have
discovered a general method to solve this type of problems, and we shall call it the method of
pseudomaster equation.

For simplicity, we assume that the radiation inside the cavity is kept inactive except for

possible leakage through one side of the cavity due to the less than perfect reflectivity of the
mirror. Let/_ be the rate of photon leakage or the inverse of the decay time. It can be expressed
in terms of the speed of light c, the reflectivity of one end mirror R and the distance between
the two end mirrors d as [11]

# = -cln R/2d. (3)

Let p(n, t) be the probability that n photons remain inside the cavity at time t. Except for the
difference in the physical meaning of the constant, the master equation for p(n, t) in the hybrid

model is exactly the same as the one first derived by Scully and Lamb [5] for the closed-system
model, i.e.,

dp(n,t) = -n/_p(n,t) + (n + 1)_p(n + 1,t), (4)

which describes the so-called non-referring measurement process, namely, the "free" evolution

of the photon-number distribution without detection or without any adjustment of the quantum
state according to the readout of the detector.

Assuming each leaked photon has the probability { of being detected, then we believe the

no-count process can be described by the following difference-differential equation

dq(n,t) = -n/zq(n,t) + (n + 1)#(1 -_)q(n + 1,t), (5)
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where (1 - () is the probability that a leaked photon propagates away without been detected.

Equation (5) is a modification of Eq. (4). One important characteristic of Eq. (5) is that it does
not conserve the total probability. Because of this characteristic we call it pseudomaster equation.
The physical meaning of q(n, t) will become clear in later development.

By the way, the pseudomaster equation for the closed-system model is

dq(n,t) = -Anq(n,t), (6)

which is quite trivial; so we shall focus our attention on Eq. (5) for the hybrid model.

The solution to Eq. (5) can be easily obtained through Laplace transformation.
no-count period begin at t = _1 and let us make the identification

q(n, tl)=p(n, tl) (7)

as the initial condition, then the solution to Eq. (5) at a later time t = t2 can be written as

q(n, t2)= _p(e, tl) {(1-()[1-e-t_(t2-tl)]}e-ne-nt_(t_-tl'. (8)

Let the

The first physical meaning of q(n, t) is that it is the unnormalized form of p(n, t) in no-
count process, namely,

OO
p(n,t) = q(n,t) _ q(n,t). (9)

lz=0

Let Pro(t1, t2) be the probability that m photoelectrons are detected during the period (tl, t2). We
are particularly interested in the special case m = 0. We can obtain from Eq. (8) the probability

that no photoelectron is detected during the period (t1,i2) as

oo OO

Po(tl,t2) = _q(n, t2)= Zp(_,tl)[1-_ + (e-t*(f2-h)] t
n=0 l=0

(10)

This is the second physical meaning of q(n, t).

To be consistent, the no-count probability must satisfy the condition

Po(tl,t2)Po(t2,t3) = Po(tl,t3).

Using Eqs. (8) and (10) in Eq. (9) we obtain

(11)

p(n, t2)- Po(ti,t2)_-_;(e, tl) (1 -(1 1 - e-#(t2-h )) ] t-ne-nt_(t2-h )

Replacing tl and t2 in Eq. (10) by t2 and t3, respectively, and using Eq. (12), we obtain

(12)

oo

Po(t2,ta) = _p(g, t2)[1-( + (e-_(ta-t=)] e
t=O

oo

_ 1 tx) [1- ( + .
Po(t,,t2) t:o

(13)
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so the condition of Eq. (I 1) is satisfied.

There are two kinds of waiting times, conditional and unconditional. We pick an arbitrary
instant and ask: "How long do we have to wait until we detect a photoelectron?" This is
the unconditional waiting time. If the waiting begins immediately after the detection of a
photoelectron, then it is called conditional waiting time. From the expression for P0(t], t2) we
can also derive the unnormalized distributions for the two different waiting times according to
[12]

and

(2O

0 PO(tl,t2)=#@_z(t2_tl)_p(n, tl)n[l__+@_u(t2_t,)] n-1 (14)W(tl,t2) - Or2
n='l

1 0 2
- 2, _ Po(h,t2)

v(tl,t2) (n)t 2

= " (15)
(n).

n=2

where (n)t is the average number of photons remaining at time t.

The difference between unconditional and condition waiting times is that the latter begins
immediately after the detection of a photons. Therefore we can see the effect on the quantum
state of the radiation due to the detection of a photon by comparing Eqs. (14) and (15). If we
replace p(n, tl) in Eq. (14) by

n+l
(n)t _ p(n + 1,tl), (16)

we obtain Eq. (15). On the other hand, if we try to use Eq. (1), we also have

= -_t ptn + 1,tl), (17)

which is identical to Eq. (16). So we conclude that the effect on the quantum state due to the
one-count process in the hybrid model is the same as that in the closed-system model, and the
superoperator for the one-count process in hybrid model remains the same as given in Eq. (1).

We now try to find the superoperator for the no-count process. Equation (12) provides the
clue for this search. It turns out to be quite sophisticated because it involves the exponential of

a superoperator. First let us define a superoperator T_('r,/_, _) such that

n(r, #,¢)fi(t) = (1 - if)(1 - e-u")h_(t)h *. (18)

Then we can define the exponential of this superoperator as

_e(r,# ' oo 1 _(5)Z_(t ) )t,exp[T_(r,#,¢)]fi(t)= g! ¢)_(t)=_[(1-¢)(1-e-U")] (h I (19)
_=0 g=o

which must be applied to both sides of the operand in lock step and cannot be split up into
two separate parts, with one being the Hermitian conjugate of the other. Let us define another

superoperator S(r, #) such that

S(r,#)_(,) =_ exp (-2hthr)_(t)exp (-_htar), (20)



which is slightly different from that defined in Eq. (2) in the physical meaning of the constant _u
and in that it does not include the renormalization. We are now ready to present the superoperator
Q(r, _) for the no-count process such that

Q(r, #, ()b(t) - S(r,#)exp[Ti(r,#,_)]b(t ). (21)

Then the density operator at the end of the no-count process can be written as

Q(r,g,()_(t) (22)
_(n,t + r)= Qz(r,,,¢)_(t) = Wr{Q(_,,, ¢)_(t)}'

where the difference between the two superoperators Q(T, p, () and Q._('r, #, _) is that the later
includes the renormalization.

It should be pointed out that this superoperator must satisfy the following conditions:

q(n,t -4- -r)= <nlQ(_, #, C)_(t)ln), (23)

Po(t,t + _) = Tr{Q(_,#,0_(t)}, (Z4)
and

Q(_-I+ _-2,_,;') = Q(_-2,#,¢)Q(rl,#, ¢). (25)
The last semigroup condition is very critical because we have found at least two less sophisticated
expressions for Q(r, #, (), which satisfy the first two conditions, but must be abandoned because
they do not satisfy the last condition. It can be easily verify that the expression given in Eq. (21)
satisfy the first two condition. That it also satisfies the last condition can be shown as follows:

Q(T2,_,,_)Q(_-I,#, ¢)_(t)
oo O(3

= E E (1- k!e!¢')/_+' (1 - e-t'"_) k (1 - e -t''' )te-t'ata"_/z(5)ke-t'a'a"l/2(5)t

k=0 l=0

k_
k=0

= Q(rl + r2,_, ()_(t), (26)

where we used the operator identity [13] e_a'af(h, St)e -_a'a = f(ae-_,at:) to change the

orders of some operators and used the summation identity _ _ A(k, g) = _ _ A(k - g.,g)
k=0 t=0 k=0 t=0

tO carry out one summation.

For a perfect detector with ff = 1, we have Q.V(T, A, 1) = S r as given in Eq. (2) for the
closed-system model. This means the present model with perfect detector is identical to the
closed-system model as far as mathematics is concerned. On the other hand, when ff = 0 we
obtain the superoperator for the non-referring measurement process, which always preserves the
total probability, i.e., Tr[Q(r, #, 0)/_(t)] = 1; so no renormalization is necessary.

We can also consider a more general "closed-system" model with the detector inside the
cavity but the cavity has some leakage. The pseudomaster equation for the no-count process
of such a system can be written as

d

-_q(n,t) = -n(.X + #)q(n,t) + (n + 1)#q(n + 1,t), (27)
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whereAis thecouplingconstantbetweentheradiationfield andthe cavity and/_ denotes the rate
of photon leakage. Except for a slight change of constants, the calculations of this generalized
closed-system model are almost exactly the same as the hybrid model. We just list the most
significant results as follows:

q(n, t2) = _p(',tl) A--_ [1- }t-n (28)

and

eo(t ,tz) =  p(e, tl) "
l=0

A l
e-(_+,)(t_-tl)]

+ j'

Q(r, A, #)= S(r,A + #)exp [7_(r, A + ,, _/(_ + ,))],

(29)

(30)

In conclusion, we have introduced a hybrid model for photodetection which is the mixture of

the previous open-system and closed-system models. It is without the defects of the former and
more realistic than the latter. We have also introduced the concept of pseudomaster equation, the
solution of which provides the clue to discovering the superoperator for the no-count process. It
is obvious that, comparing with the superoperator approach, the method of pseudomaster equation
is simpler, easier to see how to write it down and easier to handle. So we believe it has the
potential to become the fundamental equation for analyzing various models of photodetections
as continuous quantum measurement process.
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